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ABSTRACT 

Many particle—laden flows in engineering applications involve turbulent gas flows. Modeling 

multiphase turbulent flows is an important research topic with applications in fluidized beds 

and particle conveying. A predictive multiphase turbulence model can help CFD codes to 

be more useful for engineering applications, such as the scale—up in the design of circulating 

fluidized combustor and coal gasifications. 

In engineering applications, the particle volume fraction can vary from dilute (< 10-4) to 

dense (~ 50°0) . It is reasonable to expect that multiphase turbulence models should at least 

satisfy some basic modeling and performance criteria and give reasonable predictions for the 

canonical problems in dilute particle—laden turbulent flows. 

In this research, a comparative assessment of predictions from Simonin and Ahmadi's turbu-

lence models is performed with direct numerical simulation (DNS) for two canonical problems 

in particle—laden turbulent flows. Based on the comparative assessment, some criteria and the 

areas for model improvement are identified: (i) model for interphase TKE transfer, especially 

the time scale of interphase TKE transfer, and (ii) correct prediction of TKE evolution with 

variation of particle Stokes number. Some deficiencies that are identified in the Simonin and 

Ahmadi models, limit the applicability. 

A new multiphase turbulence model, the Equilibration of Energy Model (EEM), is proposed 

in this work. In EEM, a multiscale interaction time scale is proposed to account for the 

interaction of a particle with a range of eddy sizes. EEM shows good agreement with the DNS 

results for particle—laden isotropic turbulence. For particle—laden homogeneous shear flows, 

model predictions from EEM can be further improved if the dissipation rate in fluid phase is 

modeled with more accuracy. 
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This new time scale is incorporated in the interphase TKE transfer terms of the Simonin 

and Ahmadi models. For canonical problems in particle—laden turbulent flows, this time scale 

improves the predictions from these two models. 

Although EEM is a simple model, it has clear a physical interpretation and gives reasonable 

predictions for two canonical problems in particle—laden turbulent flows. It can be a useful 

engineering tool for CFD calculations of gas—solid two phase flows. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Modeling turbulent particle-laden flows is an important research topic with applications in 

fluidized beds and particle transport through pneumatic conveying. In applications like flu-

idized beds, the particle volume fraction varies tremendously, from very dense-packed beds(> 

0.4) to dilute two phase flow at the top of a circulating fluidized bed (< 0.001) . Two distinct 

regimes of particle-laden flows can be found in fluidized bed. One includes solid suspensions 

that are low in volume fraction, but still have relatively high mass loading, due to high ther-

modynamic particle density. Since this particle volume fraction is low, the influence of particle 

on the carrier phase mass conservation equation is often neglected, and so is the inter-particle 

collisions. Recently analyses show that the former assumption is not entirely justified. However 

the particles greatly alter the turbulence in the carrier phase, hence the "two-way" coupling 

should be taken into consideration. The other regime is high in both particle volume fraction 

and mass loading, and the influence of dispersed phase or particles on the continuity equa-

tion of the carrier or fluid phase cannot be ignored. At high particle volume concentrations, 

particle dynamics become collision-dominated. In this work, we mainly focus on the particle 

suspensions that are volumetric. dilute, but still have moderately high mass loading. 

Many dilute particle-laden flows in engineering applications involve turbulent gas flows. 

Turbulence enhances the momentum, heat and mass transfer between the dispersed phase 

and the carrier phase. It is useful to adopt a statistical description in these flows. Two 

commonly used modeling approaches to describe two-phase turbulent flows are the two-fluid 

(or Eulerian-Eulerian approach), and the number-density based Lagrangian-Eulerian approach 

[2, 3] . In the Lagrangian-Eulerian approach, Reynolds-averaged Navier-Stokes equations are 
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used to solve the fluid phase, while the dispersed phase is modeled by tracking the motion of 

Lagrangian particles. In the Eulerian-Eulerian approach, the multiphase flow quantities like 

velocity and volume fraction in each phase are averaged, and these averaged quantities axe used 

to describe the characteristics of the flow field. The nature of this approach leads to unclosed 

terms representing the interaction between the phases. Once these terms are modeled to close 

the equation system, the Eulerian-Eulerian approach can be used widely in multiphase flow 

simulations. The focus is on Eulerian-Eulerian approach in this thesis. 

Some popular multiphase turbulence models are reviewed here, which are based on the 

Eulerian-Eulerian approach. Elghobashi (4] developed atwo-equation turbulence model, which 

describes the conservation of turbulent kinetic energy (TKE) and dissipation rate in the fluid 

phase based on the volume averaging method. This two phase k - ~ model was validated 

by comparing with results from particle-laden jet flow [5] and jet flows laden with vaporizing 

droplets (6]. The volume averaging approach is used in this model, and it could cause problems 

if this model is used in a spatially inhomogeneous turbulent flow. 

Ahmadi [7] used the ensemble averaging method to derive the conservation laws for TKE 

in the carrier and dispersed phases. Two transport equations are derived for the evolution 

of TKE in both phases, and an algebraic model is applied in the dissipation rate of the fluid 

energy. The model contains the specification for dilute two-phase flows and dense granular 

flows as special limiting cases. Validation of this model has been reported in the simple shear 

flow for dense mixture [8] and gas-particle turbulent flows in a vertical duct [9~. In Ahmadi's 

model, the length scale used in fluid phase dissipation is not aself-contained term and needs 

further specification when using it. 

A four-equation model proposed by Simonin and co-workers [10, 11, 12, 13] has been tested 

by other researchers [l4~ and compared with experimental results for the turbulent gas-solid 

flows in a vertical pipe [15], and in a vertical riser [16]. Based on this model, a single phase 

k - e model is added in MFIX (Multiphase Flow with Interphase eXchanges) kernel and a 

turbulent pipe flow test case is included in latest version of MFIX. 

MFIX is ageneral-purpose hydrodynamic model for describing chemical reactions and heat 
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transfer in dense or dilute fluid-solid flows [17], and it is based on a two-fluid modeling approach 

[18] for multiphase flows. There are other CFD codes developed for describing the flow field 

and heat transfer in the dilute and dense fluid-solid flows in fluidization and particle transport 

in pneumatic conveying. A detailed list of this group of CFD codes can be found in Peirano's 

review of Eulerian two-phase flow theory for fluidization [19] . It includes MFIX, MELODIF, 

and GEMINI from Enwald's group [19] to name a few. MFIX is now maintained and developed 

by EG&G W.A.S.C. Inc./Department of Energy Morgantown group. MELODIF is developed 

by Electricite de France(EDF) group, which made quite detailed analysis of the two-fluid 

model and constitutive equations applied to gas-particle fluidization. Simonin's multiphase 

turbulence model is tested in MELODIF. 

These CFD codes can be useful for engineering application, such as the scale-up in the de-

sign of circulating fluidized combustor, and coal gasification, only if the turbulence models are 

predictive. The turbulence model should satisfy some basic modeling and performance criteria. 

These criteria could be found in Direct Numerical Simulations (DNS) data and experiments 

for gas-solid turbulent flows. Furthermore, the multiphase turbulence model should give rea-

sonable predictions for canonical problems in particle-laden turbulent flows. By identifying 

these criteria, CFD calculations in the general code like MFIX, can be further improved. 

1.2 Statement of Problem 

The objective of this work is to: 

(1) perform a comparative assessment of model predictions with direct numerical simulation 

data for the canonical problems in particle-laden turbulent flows, 

(2) identify the modeling criteria based on comparative assessment, 

(3) propose a new multiphase turbulence model for dilute particle-laden turbulent flows, 

which satisfies the modeling criteria in comparative assessment. 

The thesis is organized as follows. The governing equations for gas-solid two phase turbulent 

flows in the Eulerian-Eulerian approach are discussed in Chapter 2. Chapter 3 describes the 
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canonical test problems. One is particle-laden isotropic decaying turbulent flows for which 

DNS was performed by Sundaram and Collins [1], and the other is the homogeneous shear 

flows laden with particles for which DNS was performed by Elghobashi [20]. In Chapter 4, 

two multiphase turbulence models due to Simonin [10, llJ and Ahmadi [7, 8] are discussed. 

Some numerical issues encountered in solving these model equations axe also discussed in this 

chapter. The comparative assessment of model results with DNS data for the paxticle-laden 

isotropic turbulent flow and the homogeneous shear flow is discussed in Chapter 5. 

A new multiphase model, the Equilibration of Energy Model (EEM), is proposed in Chapter 6. 

Since turbulence has various length and time scales, a multiscale interaction time scale for 

interphase TKE transfer is used in EEM. In fact, incorporating the EEM specification for the 

interphase TKE transfer time scale improves the performance of the two multiphase turbu-

lence models. The model predictions from EEM for canonical test problems are discussed in 

Chapter 6. The conclusions of this study and recommendations for future work are discussed 

in Chapter 7. 
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CHAPTER 2. SYSTEM OF EQUATIONS IN EULERIAN-EULERIAN 

FORMULATION FOR MULTIPHASE TURBULENT FLOWS 

The Eulerian-Eulerian (EE) or two-fluid approach is one of the statistical models for 

two-phase flow that is used in CFD calculations of multiphase flows. There are several ways 

of defining averaged equations in Eulerian-Eulerian approach, and one may use temporal or 

volume averaging. Time averaging is strictly applicable t0 only statistically stationary flows, 

while volume averaging is strictly applicable only to statistically homogeneous flows. Drew's 

formulation [21] of two-phase flow problem uses the ensemble-averaging which enables the 

Eulerian-Eulerian approach to be applied to statistically unsteady, inhomogeneous problems. 

In this chapter, the - governing equations for first and second moments of velocity [2, 3] are 

derived following Drew's formulation. 

2.1 Random-Field Representation of Two-Phase Flow 

Consider agar-solid two-phase flow, the dispersed phase is rigid solid particles and then 

each paxticle has constant thermodynamics density. Let Ia(x, t) donate the indicator function 

of the ,Qth phase, which is unity if the location x in physical space is occupied by phase ~i at 

time t, and zero otherwise. It is assumed that (i) the density difference between the two phases 

is sufficiently large so that the density field can be used to distinguish between the two phases, 

and (ii) the characteristic length scale of the interface over which this density change occurs is 

so small that in a continuum description the density changes discontinuously at the interface. 

The second assumption implies that in two-phase flows the phase indicator functions satisfy 

the relation 
2 

Ip (x, t) = 1 
,Q=1 
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for all (x, t). The phase index is ~3 and the particle phase is referred to as ,C3 = p and the fluid 

or carrier phase as ,Q = f . 

The event associated with the random-field representation is Eo~~ _ [I~(x, t) = 1]. The 

probability of this event defines a probability field ap(x, t): 

ap(x,t) - P[Ip(x,t) = 1]. (2.2) 

It is important to note that ap(x, t) is not a probability density in x, because the sample 

space of I~(x,t) is {0,1}. For two-phase flows the pp satisfy the relation 

2 

a=1 
In the Eulerian-Eulerian formulation for two-phase flow fields, phasic average or phas~-

average fields axe used to describe the two-phase flows [21]. The phasic average is a conditional 

average, where the average is conditional on the even Eo'~~ , i.e., on the presence of phase ,Ci at 

that space-time location (x, t). In particular, the mean density and velocity field conditional 

on the presence of phase ,6 is used in the formulation. The mean density conditional on phase 

,Q is defined as 
~p(x,t)I~(x,t)~ 

~P~~X~t~) = ~PIIQ — l~ _  ~Ia~X,t)) 
(2.4) 

Using standard conditioning arguments of probability it is easy to show that the expected 

value of the indicator function Ip(x, t) that appears in the denominator of Eq. 2.4 is simply 

the probability field pR(x, t): 

(Ip~Iy = 1)ay(x, t) = a,~(x, t) (2.5) 
7=1

The unconditional mean density field of the two-phase mixture (p(x, t)) is defined as 

Since we consider two-phase flows with constant thermodynamic density, (p(x, t)IQ(x, t)) 

is completely determined by the phase probability field such that 

(p(x,t)Ip(x,t)} = pa•a,~(x,t) (2.6) 

The mean velocity field can be defined in terms of conditional density-weig~ited average: 

`U~~) ~ ( ~PIa) > 
~a.7~ 
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These density-weighted averages are the most convenient description of the mean velocity fields 

in the mean momentum equations. The mean velocity conditioned on phase ,Q without density- 

weighting is defined as: 

~Ù~~) ~ ( (a) > 
For the constant density two-phase flows ((p~Ip = 1) = p~), the conditional density-weighted 

mean velocity fields are identical to their unweighted conditional mean velocity: 

~2.g~ 

(2.9) 

The unconditional density-weighted mean velocity field of the mixture (U~"'~~ (x, t)) _ 

(pU) / (p) is defined as
2 

~P) Q_1
(2.10) 

This unconditional density-weighted mean mixture velocity field ~U~Q~ (x, t)) in multiphase flow 

is analogous to the Favre-averaged velocity in variable-density single-phase turbulent reacting 

flows. 

The unconditional mean velocity without density-weighting can be recovered from 

{ (Uk~~), l3 = 1, 2} using the relation 

(U~~>> 
2 

(3=1 

~2.ii~ 

It is easy to show that in multiphase flows (U~"°~) ~ (U~"'>) even for the constant-density case, 

because of the different weighting factors in Eqs. 2.10 and 2.11. 

2.2 Equation System in Eulerian-Eulerian Approach 

In Drew's formulation, the governing equations for mean mass and momentum equation are 

derived by multiplying the standard Navier-Stokes equations by the indicator function I Q (x, t) 

and taking expectations of the resulting equations. Here I Q (x, t) is a Heaviside function which 

has the special properties of generalized functions. This procedure follows Drew's exposition 

of the mathematical theory of two-phase flows. 
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Mean Mass Conservation 

The mean mass conservation in each phase (Q = f , p) is: 

~[~a(plj~ = 1>l+ axk[aa~Plla = 1)~U~a~~J = ~SPQ~). 

where the source term on the right-hand-side of Eq. 2.12 is given by 

and U~~~ is the velocity of the interface. 2 

(2.12) 

(2.13) 

Taking the expectations of the instantaneous mass conservation equation, and summing 

over both phases gives the constraint 

(spy=f)> _ _~SpI~=P)} . (2.14) 

For zero interphase mass transfer, such as gas-solid flows, the source term (SP'~~) is zero. 

Mean Momentum Equation 

The mean momentum conservation in each phase (~3 = f, p) is: 

Bt ~aQ~PIIR - 1)~U~a~)~ + ~~k ~aQ~P~IQ = 1)(U(Q)
)~Uka~)~ 

ax; ~a,Q~PI jQ = l~RZQ) J -}' axi ~IQTi~~ + ~ j QPb.9~ ~" \SMj~ (2.15) 

where R«~ is the Reynolds stress in phase /j, the definition of which will be discussed later 

in this chapter; ~IaTi~~ is the expected stress tensor weighted by the phase indicator function; 

(I~pb~) is the expected body force weighted by the phase indicator function, aI1Cl ~SM~~ is the 

interphase momentum transfer source in ,6 phase, 

~sM~~ _ ~PU' ~Uz — u~I~) aI~ - T~~ aI'~ axi axe (2.16) 

The interphase momentum transfer source has two parts: the first term represents the con-

tributions from the interphase mass transfer, while the second term is due to the fact that 

the interface can support a stress difrerence. For gas-solid two-phase flows, the first term in 
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(SM~) is zero, and the second term is required for closure through modeling. The interphase 

momentum source is subject to the following constraint 

(SM f ~) _ -(SM p~) + (MCI>} X2.17) 

where (M~I> ~ is the average momentum associated with the interface. When the dispersed-

phase is a solid, the average momentum associated with the interface (M~ j~) is zero. In this 

work, we are concerned with isothermal constant-density tw~phase flows, and therefore an 

equation of state and energy equation are not required for closure. 

2.3 Second Moment Equations 

The evolution equations for the second moment of velocity based on Eulerian-Eulerian ap-

proach are presented in this section. Before describing the second-moment evolution equations 

for velocity, the fluctuating velocity field needs to be defined. The fluctuating velocity in phase 

,6 is defined as

u"cap = UZ _ ~Uca> ~ 
Z 2 

(2.18) 

where Ui is the velocity field, and (U~'~~ ~ is the conditional density-weighted average defined as 
2 

~U(a)~ - ( ~A a) > 
(2.19) 

where I~ is the phase indicator function of the ,(3th phase. Based on the definition of (density-

weighted) fluctuating velocity, the Reynolds stress R~'~~ is defined as 

~(~) 
zj 

I  pu~~(~)u~~(~} 
Q i ~ 

(I~P~ 
~2.Zo) 

For gas-solid two-phase flows, without interphase mass transfer, the evolution equation of 
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the Reynolds stress ~~'~~ in phase ,~ is 
2~ 

D~ --(,~~ a „cQ} „c;~~ „cap _ (jaP~ Ri3 -.~   j~ put u~ u~ —
Dat o~x~ 

~ pu„(~Q) u„(,Q) 
a z ~ 

+ 
u2 

o~x + 
u~ 

ax k k 
+ u„(~> S(~) + u  Ica) Sca) 

z M~ ~ Mz 

{~ a~u«>~ 2 
I~ pug u~ 

o~x } 
(2.21) 

where the terms on the left hand side are: 

(i) the material derivative of the Reynolds stress in phase /3 with the density-weighted 

mean velocity in phase ,(3, 

(ii) the triple velocity correlation term. 

The terms on the right hand side axe: 

(iii)-(iv) production of Reynolds stress due to the mean velocity gradients, 

(v)-(vi) fluctuating velocity-stress gradient correlation, 

(vii)-(viii) fluctuating velocity-interfacial momentum transfer correlation. 

In Eq. 2.21 SM~ is the interphase momentum transfer source term in phase ,Q. 

The material derivative moving with the density-weighted mean velocity in phase 

defined as: 
D,~ _ 
DQt 

a 
o`~t \ / 

R is 

(2.22) 

The kinetic energy ~f  and ~p in the fluid and particle (or dispersed) phase respectively, 

are the half of the trace of the Reynolds stress tensor. For gas-solid two-phase flows, the 

thermodynamic density is constant in each phase and the dispersed phase is rigid particle. 

Furthermore, the unconditional density-weighted mean velocity is equal to the mean veloc-

ity without density-weighting. The evolution equation for kinetic energy in phase ,C3 can be 
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simplified from Eq. 2.21 as 

a~P~ + 
U~ a~ p~ 

~ + 2 
a~PQ 

cox 
u2 u2 u~ 

opt a ~ ~ 

_ I u (~) u (/~)  i  + u . ( ~   ...}._ ui SM . (2.23) 
~p 2 ~ ~x~ z ~~~ .~ 

where a~ is defined in Eq. 2.2, which is the probability of phase ,Q appearing in the physical 

space x. p~ is the density in phase ,6. The third term on the left hand side is the triple velocity 

correlation term. The terms on the right hand side are 

(i) the production of TKE in phase ,0 due to the mean velocity gradient, 

(ii) the fluctuating velocity-stress gradient and fluctuating velocity-pressure correlation, 

where the contribution from pressure correlation is neglected, and this term is modeled as

the dissipation in the phase ,Q; 

(iii) the fluctuating velocity-interfacial momentum transfer correlation. 

The third term is not in the second moment equations for the single phase turbulence. It is 

this term that place the challenge on modeling rather than the other two terms on right side 

of Eq. 2.23, and is called interphase TKE transfer in the later chapters. 

Two canonical cases for particle-laden turbulent flows will be described in the next chapter. 

For each test case, further simplification is done in Chapter 3. Based on the simplified equation 

system, two multiphase turbulence models are introduced in Chapter 4. 
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CHAPTER 3. T~VO CANONICAL TEST CASES FOR 

PARTICLE—LADEN TURBULENT FLOWS 

In this chapter, the two canonical test cases for particle-laden turbulent flows are described 

and the governing equation systems for turbulent kinetic energy (TKE) from Chapter 2 are 

simplified for the test cases. 

3.1 Particle-laden Isotropic Homogeneous Turbulent Flow 

In this section, the important limiting case of the particle-laden isotropic turbulent flow 

under zero gravity is discussed, and major results from direct numerical simulation (DNS) 

of Sundaraxn and Collins [l] are summarized. In this limiting case the second-moment of 

the fluctuating velocity can be studied only with effects from interphase turbulent kinetic 

energy (TKE) transfer and the viscous dissipation (without influence from momentum and 

mass conservation equations). The simplicity of this test case enables the detailed study of the 

unclosed terms in the governing equations for TKE in both phases. 

For a steady homogeneous turbulent flow the mean pressure gradient in the fluid phase 

balances gravity. Hence in zero gravity the mean pressure gradient must also be zero. The 

mean momentum equation system results in the trivial solution of zero mean velocity in each 

phase, which implies a zero mean slip velocity [3]. If the flow field is initialized with zero mean 

velocity in both phases, the mean slip velocities will remain zero all the time. 

In the DNS study of Sundaram and Collins (called decaying turbulence hereafter in the 

thesis), the turbulence remains isotropic, since the simulation performed in this study neglects 

gravity [1]. However, experimental measurements [22] and DNS calculations of Squires et 

al. [23, 24] report preferential concentration of particles in isotropic turbulence. While these 
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results indicate that particle-laden turbulent flow may not remain isotropic instantaneously 

on every realization, the degree to which averaged quantities like TKE in the fluid and particle 

phases are influenced by preferential concentration in these flows is an open question. 

In the DNS [1], rigid, spherical, solid particles evolve in a free decaying isotropic turbulent 

flow. There is no interphase mass transfer. The flow is volumetrically dilute, with particle den-

sity much larger than fluid density (pp/ pf ~ 103) . The particle size is in the sub-Kolmogorov 

range (r~ = 0.035 and d/r~ < 1), but suffiiciently large so that the Brownian motion of particles 

can be ignored. Hence, a linear drag law can be applied to each particle in the momentum 

equations. 

The boundary layer around each particle is not calculated, and particles are viewed as 

point sources of momentum in the flow field 1. The particle collisions are assumed to be elastic 

and conserve particle kinetic energy. As the particle volumetric loading rate is quite low, the 

influences of the particles on the fluid phase continuity equation are neglected, but the effects 

on fluid momentum are still taken into consideration. 

The predictions from DNS calculation show that the energy in both phases decreases mono- 

tonically and the net effect of particles is to reduce fluid energy. This effect grows with in-

creasing Stokes numbers. See Fig. 3.2. The particle energy also decays in time and the decay 

rate increases with increasing Stokes number (for fixed mass loading) . See Fig. 3.3. 

The simplifications to the mean equation system arise from the assumption of statistical 

homogeneity and zero gravity [3] . Based on the phase mean momentum equation for homo- 

geneous, one-dimension problems, the gradient of mean pressure along the non-zero velocity 

component is needed to balance the acceleration due to the gravity. For the zero gravity case, 

the mean momentum equation for homogeneous, one dimensional flow problem shows trivial 

steady solutions, since the mean pressure gradient along the non-zero velocity component is 

zero, and also the pressure field is statistically homogeneous. If the mean velocity in each 

phase is initialized with zero, the mean velocity field will keep zero, which implies a zero mean 

slip velocity. 

1 However, kernel averaging is done to interpolate the interphase momentum through some terms onto fluid 
motions 
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With these simplifications, the evolution of energy in the fluctuating particle velocity and 

the TKE in the fluid phase can be studied, independent of the mean flow quantities. If 

zero interphase mass transfer, statistically homogeneous flow with constant thermodynamic 

density in both phases, and a solid dispersed phase with zero gradient of stress in the bulk are 

considered, the simplified governing equations are 

dl~f  _ 
a fPf dt 

dl~~ —
ap 

pp 
dt 

ii(.f) ~(-jfT~i) 
ui

o~x~ 
u~~ (~) S Cp) 
Z M2 

Z MZ 

(3.1) 

where of and ~p are the volume fraction of fluid and particle phases respectively. pf  and pp

are the density in each phases. The kinetic energy of fluctuating velocity, denoted ~f  and ~p

in the fluid and particle phase, is one half times the trace of the Reynolds stress tensor in the 

fluid and particle respectively, which is defined as 

(I Pu~~ (,~) u~~ (a) } 
D~~~ _  ~ 2 2 

Zj (I~ p} 
(3.2) 

In Eq. 3.1, S~f ~ and S(p). represent the interphase momentum transfer source term in each MZ M2 

phase. The fluctuating velocity in each phase is defined in Eq. 2.18 in Chapter 2. 

3.2 Particle-laden Homogeneous Shear Flow 

In this section, another canonical test case, the particle-laden homogeneous shear flow, 

is described. Direct numerical simulations (DNS) data for this case has been reported by 

Elghobashi [20] . In this DNS calculation, the two-way coupling between particles and fluid is 

studied in a homogeneous turbulent shear flow (hereafter called homogeneous shear flows in 

later chapters). 

In this DNS calculation, the cases with and without gravity are studied. The DNS results 

without gravity is compared with model results in the thesis. The sketch of the flow field is 

shown in Fig. 3.1. The flow field has imposed mean velocity in xl direction (U = Sx3 ), where 

S is the mean velocity gradient, given by S = 1 in the simulations. The solid particles are 

rigid and spherical, and have constant thermodynamic density. The interphase mass transfer 



www.manaraa.com

15 

is zero. The particle volume fraction is small a p < 10-3, and the effect of the presence of 

particles on the fluid continuity equation is neglected in the DNS calculations. The particle 

size is in sub-Kolmogorov range. The point particle approximation is also used in this study, 

and the linear drag law is applied in the mean momentum equation for the fluid phase. In 

the DNS study, the particle-fluid density ratio (pp/ p f) varies from 472.5 to 1890, and also the 

particle Stokes number (Tp/T,~) changes from 0.233 to 2.33. 

In the fluid phase, mean velocity is imposed to xl direction with zero mean velocity in x2

and x3 directions, and the mean velocity gradient S = dU/dx3 = 1, see the schematic of the 

flow configuration Fig. 3.1. For the particle phase, the same mean velocity field and mean 

velocity gradient are imposed. One can write out the governing equations for mean mass and 

momentum conservation in fluid and particle phase as, 

c'3t + Ulf  )~ axl = 0, 

~?t 8x1

a v~p>> 
aPPP (~  - - ~SMi)• 

(3.3) 

(3.4) 

(3.5) 

In the above equation system, if the mean velocity field and the mean velocity gradient are 

Figure 3.1 Schematic of the flow configuration in particle-laden homoge-
neous shear flow. 

imposed (or fixed) in both fluid and particle phases, which means that the mean velocity does 
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not than e with time in both bases. Therefore, the mean slip velocity (U~f ~ } — (U~p} } is zero g P 1 1 

in homo eneous shear flow. Hence, the interphase momentum transfer source term (SM1} in g 

fluid phase should be zero, and thus the mean pressure gradient is zero everywhere. 

A noteworthy point is that the flow field studied here is different from the single-phase 

homogeneous shear flows. In single-phase turbulence, the homogeneous shear turbulent flow 

can be reasonable well approximated in wind—tunnel experiments. By controlling the flow 

resistance upstream, a turbulent flow with the mean velocity sketched in Fig. 3.1 can be 

produced [25] . However, for gas—solid two—phase turbulent flow, to maintain the zero mean 

slip velocity and the same mean velocity gradient in both phases is quite difficult. Since the 

particles have much larger inertia than the fluid, particle reacts slower to the surrounding fluid. 

As the drag force acting on each particle depends on the slip velocity on each particles, the 

mean slip velocity might not remain zero as time evolves, unless there is some external force 

exerted on each particle. Furthermore whether the mean velocity gradient in each phase can 

remain same is an open question. 

The major results from particle—laden homogeneous shear flows are that 

i) The effect of varying the particle inertia (T~ = 0.1, 0.25, 0.5,1.0) on the evolution of 

turbulent kinetic energy is studied. It shows that as the particle inertia increases, the rate 

of reduction of turbulence kinetic energy is increased with the largest rate of reduction 

observed for T~ = 1.0. 

ii) The evolution of the velocity correlation (u~,l u f ,3} is reported for T~ = 1.0 and mass 

loading ~ = 1.0. The model results for velocity correlation are compared with DNS results. 

For this particle-laden homogeneous shear flow, the governing equations for the TKE in 

each phase can be further simplified as 

~,~PQ  aQ p~ (uZ 2 ~ } dt 2 o~x~ 

— a p (u « ~u~ ~} ~ ~ 1 3 ~x3 
„«~ a(IaT~i) „(~~ cap 

axe
where in shear production term, only dUl /dx3 ~ 0. The Reynolds stress Rl~~ _ 

(3.6) 

1 3 

remains after the simplification. All the other terms have been discussed in Chapter 2. In the 
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multiphase turbulence models tested in this work, the triple correlation of fluctuating velocity 

is usually modeled with agradient-diffusion hypothesis 

 cx~ p~ (u2 ui u~ } — — cx~ p~  
O`lx~ O`lxk ~~ ax3 

where vT is the turbulent eddy viscosity in each phase, and ~~ is the turbulent Prandtl number 

for kinetic energy, which is generally taken to be 1.0 . Since the turbulent flow field is homo- 

geneous, the triple correlation is omitted in the equation system. The evolution equation for 

TKE for phase ~i is further simplified as 

a~a ~ ~~ca> ~~ca~~a(Ula>~
a~PJ~ ~ — — aQPa~ui us ax3

+ ~u~~ca> a(a~k 2)~ + ~uz~ca~ sMz> (s.7~ 

In Chapter 4, two multiphase turbulence models are simplified following the formulation in 

Eq. 3.7. Some deficiencies with these two multiphase turbulence models are found out. 

1 
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Evolution of TKE in fluid phase (DNS from Sundaram &Collins) 
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Figure 3.2 Evolution of normalized TKE in fluid phase (DNS data from 
Sundaram and Collins [l~). 
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Evolution of TKE in particle phase (DNS from Sundaram and Collins)) 
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Figure 3.3 Evolution of particle energy (DNS data from Sundaram and 
Collins [1]). 
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CHAPTER 4. DESCRIPTION OF MULTIPHASE TURBULENCE 

MODELS 

Two multiphase turbulence models that are tested are described in this chapter. The gov-

erning equations from these two models are further simplified for decaying isotropic turbulence 

(particle-laden isotropic turbulent flows) and the particle-laden homogeneous shear flows. In 

order to do the comparative assessmemt, the simplified model equations axe solved numer-

ically. Some numerical stiffness problem is found when solving the model equations. This 

stiffness problem is analyzed and discussed in Section 3, and also the numerical method used 

is described in this section. 

4.1 Simonin's Model: Model Description 

The model proposed by Simonin and co-workers uses the Eulerian-Eulerian approach for 

both phases in the gas-solid turbulent flows. The turbulent motion in fluid phase is predicted 

by means of a standard two-equation single phase turbulence model (the widely employed 

k — s model), with additional terms for interactions with the dispersed phase. 

For the dispersed phase, a separate transport equation for the particulate kinetic stress 

tensor is derived, which accounts for the turbulent transport mechanism, and the drag force. 

The trace of particle kinetic stress tensor is actually the TKE in paxticle phase. The model 

for particle phase TKE is restricted to relatively low particle concentrations (paxticle volume 

fraction a~ < 0.1, and the inter-particle collisions are neglected). The turbulent momentum 

transfer between two phases is represented through afluid-particle velocity covariance (kfp), 

which obeys an additional transport equation. 



www.manaraa.com

20 

4.1.1 Governing Equations for Particle—laden Isotropic Turbulence 

The simplified model equations for TKE 1~f and dissipation rate ~f in fluid phase 1 are 

dl~f~fPf dt 
d~f

~ fPf dt 

= II~f — ~f p f~ f~ 
~2 

= III —~ p f C~2. f f f 
~f 

(4.2) 

where CE2 = 1.92. Particle phase influences the fluid phase TKE through the interphase TKE 

transfer term II~f , which is modeled as, 

nkf = a~PfF'D ~~f~ — 2kf + (Uf,i — UP,2) • Ud,i] . (4.3) 

where FD defined below, plays the role of an effective particle response frequency. Due to the 

zero mean slip in the flow, II~f is further simplified as, 

nkf = apPfFD ~kf~ — 2kf~ 

The particle influence on the dissipation rate of fluid energy ~f in Eq. 4.2 is, 

~f 
~f 

where C~,3 = 1.2. 

The modeled transport equation for TKE in particle phase is simplified as 

dl~p 
~xp pp 

dt 
dl~ fp

c~ p pp 
dt 

= III f~ a~Pp~.fp 

(4.4) 

(4.5) 

(4.6) 

The dissipation of the particle energy is neglected, due to the assumption of elastic collisions 

in the DNS studies. 

The interaction term accounting for the influence of fluid phase on ~p is modeled as 

II = — a 1 21~ — 1~ 4.7 k~ pPp F ~ p fp~ ( } 
T12 

1In Simonin's model, 1 represents the fluid or carrier phase; 2 represents the particle or dispersed phase. 
Here subscript f is used to represent the fluid phase; and subscript p to represent the particle phase. 
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where T12 is the particle relaxation time 2 In the dynamic equation of fluid—particle covariance 

1~ f p, the interphase momentum transfer is given by 

1 
~~fn — —CYPPp F ~~1 + ~~ kfP — 2k f  — 2¢kP] ~ 

T12 

where ~ = P is the mass loading. The term e fp accounts for the dissipation rate due to 
ff 

viscosity in the fluid phase and the loss of correlation by crossing-trajectory effects, which is 

modeled as 

~fP — ~fP~T12 (4.9) 

where T12 is the time scale of the fluid turbulent motion viewed by the particles, and is modeled 

as 

t t t2 —1/ 2
T12 — Tl ~l  + ~QSr~ where ~T = I Vr

~3~f 

where c~ varies with the angle between the mean particle velocity and the mean relative 

velocity, and c~ = 0.45, since this angle is zero in homogeneous turbulence case. The time 

scale of the energetic turbulent eddies TZ is 

~ 3 1~f Tl = — C~,, 
2 of 

where C~ = 0.09. 

The effective particle response frequency FD is given in terms of local mean particle 

Reynolds number Rep: 

F~ 

CD

4 dD (Ivrl)~ (IvTi) _ 
24 ~l + 0.15RePo.ss7~ 

Rep

TT ( ~~ ~~ ~ V1',Z V T,2 ~ v~.,221r~2 2 

a -1.7 
f ' 

where the particle Reynolds number Rep is defined as, 

Re — of ~I vr~)d .
~' v f 

for Rep < 1000 

(4.10) 

The averaging method (• )2 is defined as the dispersed phase mass average in Simonin's model. 

The average value of the local relative velocity between each particle and the surrounding fluid 

2In chapter 6, the notation for particle relaxation time changes to T~ . 
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flow VT,2 can be expressed as 

V __ 
( _~I _V V __ _ __ 

(
~~ 

T,2 ~U1',z ` f ~2 ~ " d ~ Z " d ~ 2 ~ u f ~2 ~ 2 ~f ~2 `u f ~2 ~ 2
~4.ii~ 

where Up,2 and U f,2 are the mean velocity of each phase; the drifting velocity Vd,i represents the 

correlation between the instantaneous distribution of particles and the turbulent fluid motion 

at large characteristic length scale with respect to the particle diameter. 

The principal time scale in the model is T12, the particle relaxation time or response time, 

which is related to the inertial effects acting on the particles: 

TF  = 
F'_1 Pp 

12 D 
Pf 

(4.12) 

However, this time scale is based on the slip velocity (~ yr ~ } 2, which is defined on the basis of 

of  ~ ~~f and u'p ti ~~. 

The model constants used in Simonin's model are listed in Table 4.1. 

Table 4.1 List of coefficients for Simonin's model 

C'~.c ce,2 c~,l Uq ~~ ~1 ~e,3 

0.09 1.92 1.44 1.0 1.3 1.0 1.2 

4.1.2 Governing Equations for Particle—laden Homogeneous Shear Flow 

For the particle-laden homogeneous shear flow discussed in Chapter 3, the mean velocity 

is only non-zero in xl direction, and S = dUl /dx3 = l; see Fig. 3.1. 

The simplified model equations for TKE ~f and dissipation rate ~f in fluid phase are 

dl~f
dt 

d~f

dt 

__ / ii ii ~ U .f,1 Hof 
ax3 of pf 

2 
_ _ ~ f ( if ii \ ~Uf ~ 1 ~~f ~f C~,1 \uf~l u f~31 + c ~~21~f ax3 cx f p f ~ f 

(4.13) 

(4.14) 

The interphase TKE transfer term and dissipation term have been discussed in the previous 

section. The production of TKE in both phases due to the mean velocity gradient takes effect 

in this case. The fluid velocity correlation is computed with the help of turbulent eddy viscosity 
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concept in Simonin's model, 

( ~~ ~~ 
uf,zuf~~ 

t o~U f,i c~U.f ~~ 2 t ~U.f ~m - of -~ -~- - S2~ ~f -~ ~faxe axe 3 axm

where the turbulent eddy viscosity in fluid phase is modeled as 

2 
t_ 2 t_ ~f v f - - ~.f Tl - C~ 

3 ~f

where C~ = 0.09. 

The simplified equations for TKE in particle phase are 

C,~~p 

dt 

d~fp 
dt 

! ~~ ~~ \\ o~Up,l 
01x3

/ ~~ ~~ \\ atlp,l
ax3 

-~. ~~~ 
appp

\\ aU f ,1 ~~fP 
Cu f,3up,1/ + ~fp ax3 cxp pp

(4.15) 

(4.16) 

X4.17) 

(4.1s) 

The turbulent kinetic stress tensor components are modeled using the turbulent eddy-viscosity 

concept 

C „ „ 
u p~Zu p~~ 

t aUp,z aUp~~ _ - vp
ax j axi 

2 t aUp,n-i, 
~' - Sz j ~p ~' vp 

3 01xm
(4.19) 

The algebraic expression for the turbulent eddy-viscosity in particle phase is obtained from 

the off-diagonal correlation equations written in aquasi-equilibrium homogeneous shear flow, 

assuming that the difference between the fluid and the particle mean velocity gradients remains 

negligible: 
p -1 

vp — ~v12 + 2T 1  3 kPJ ~1 + 22 ~~ J z 

where T2 is the inter-particle collision time and ~~ takes the general form, 

(4.20) 

Q~ _ [1 + e~] [3 - e~] /5 (4.21) 

Since the inter-particle collision is assumed to be elastic (e~ = 1) in the DNS case, a~~ leads to 

the Grad's value ~~ = 0.45. Following Simonin's discussion [26], if T2 is small compared to the 

other time scales, the particle fluctuating motion is controlled by collisions between particles 

without effects from the fluid motion. On the other hand, if T2 is large, the gas is expected to 

play a dominant role in the fluid fluctuating motion of particles. So for very dilute gas-solid 
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two-phase flows, T2 is expected to be very large (T2 —~ oo). The turbulent eddy-viscosity in 

particle phase for the dilute particle-laden flows is further simplified as 

1 2 
v~ = L f p -f- -T12-gyp 2 3 

(4.22) 

The fluid-particle turbulent viscosity vf p is written in terms of the fluid-particle velocity co- 

variance ~fp and an eddy-particle interaction time Tie 

_ 1 t _ t 
vf~ — ~fPT12 3 

(4.23) 

The fluid—particle covariance must be modeled, and there is no direct measurement of the 

quantity. The closure assumption for this term is made to be consistent with the modeling 

of fluid turbulence when the particle response time tends toward zero with respect to the 

eddy—particle interaction time 

_ t F where r~,. — T12/T12• 

by 

C f,2 p~j/ f~ Z~ +   \ f~2 f~j/ f Z~ 3 1-}- ~r 3 

v12  ~U f~2 ~U~~j 1 C~U f pm O~Up~m
-  -}- - - SZ~  ~2 j 

1  -~- ~r ~x j ~xi 3 ~xm ~xm 

If T12 is very small compared with T12, the fluid-particle covariance is given 

/u" ~ u" = 1 1~ b ~ /u" ~ ~c" — 21~ b \ f~2 p~j/ fp z.7 + \ f~2 f,~~ f Z~ 3 3 

4.1.3 Initialization of Certain Model Parameters 

(4.24) 

(4.25) 

In Simonin's model, the auxiliary flow quantities need to be initialized. One of these 

unspecified quantities is (~v,.~~ 2i the magnitude of the averaged value of the local relative 

velocity between each paxticle and the surrounding fluid flows. In Simonin's model (~vr ~) 2 is 

defined as

\I vT~~2 = y r?iVr~i ~- ~vT~Ztir~2~2 

where Vr,i is the mean relative or slip velocity, and is zero in the particle—laden isotropic 

turbulent flows. In (~ v,. ~ } 2 v'~',Z needs to be modeled. In the thesis, the following approximations 

are used 

v, ,̀Z - of a~ (2c'f  --}- u'p) where u'f  = u'p = (4.26) 
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In addition, in Simonin's model, the fluid-particle velocity covariance 1~f~ is a pseudo-flow 

quantity, and needs to be initialized3. An approximation is used here for ~fp 

~.fp~t) = Af~lt~ ' ~fl2lt~ ~ ~pl2lt~ (427) 

where p fP(t) is a "fluid-particle" correlation coefFicient, which should be bounded between 0 

and 1, based on Cauchy-Schwarz inequality.4 Using this definition, we can determine k f p(0) 

by setting p fP(0) values. The role of k fP is discussed in detail by Subramaniam who axgued 

that k fp has no place in first-order single point closures of two-phase turbulent flows. This 

conclusion is-also reached in the DNS study of Collins in Eq. (29c,d) in [1]. 

4.2 Ahmadi's Model: Model Description 

A two-equation model is derived for TKE in fluid and particle phases by Ahmadi [7]. The 

dissipation rate of fluid and particle energy is given by a set of algebraic equations. Model 

predictions of simple shear flows for a dense mixture are reported [8] and the paxticle volume 

fraction employed in this validation is up to 0.3 for gas-solid turbulent shear flows. The 

governing equations for the transport of mass, momentum, and fluctuation energy are derived 

specially for the case of an isothermal, fully saturated two-phase flow with incompressible fluid 

and particulate constituents [8]. 

4.2.1 Governing Equations for Particle-laden Isotropic Turbulence 

The simplified TKE governing equations for the the particle-laden isotropic turbulent flows 

are 5

pfa f d~ tf  = 2Do (kP - ck f) - Pfaff 

p~aP dd t ~ = 2Do (ck f  - kp) 

(4.28) 

(4.29) 

3In general, for inhomogeneous flows, one needs to specify this pseudo-flow quantity for boundary conditions, 
which makes the problem even more complicated. 

4Some researchers [14] define pf~ up to 2. In this work, pfP(0) = 2.0 is used. 
5In Ahmadi's model, the notation to represent the fluid and particle phase, and volume fraction are slightly 

different. The notations are made consistent in the thesis. 
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The dissipation rate for energy in the fluid phases is modeled as 

~f - af~kf)3~2 and a f  = o f  D (4.30) 

where C fD = 0.165 is a constant and A f  is a characteristic length of fluid turbulence. Since 

particle collisions are elastic in the DNS test case, the dissipation rate of particle energy is 

taken to be zero in Ahmadi's model. 

The coefficient c is related to the ratio of the particle time scale p~,a~,/Do to the Lagrangian 

time macroscale of turbulence TL, 

1 
C— 1+  pan , 

DoTL

The drag coefficient is given as 

TL = 
0.1651~f 

~f 

18~ fay Ll + 0.1(Rep)o.7s1 

D ~ — ~2 a  0.25vn, J
(1 ~) 

where d is the mean particle diameter. The particle Reynolds number Rep is defined as 

P.fdlUf,i - Up,i~ Rep = 
~f 

where U f ,i and Up,2 are the ith component of the mean velocity in the fluid and particle phase 

respectively. 

4.2.2 Governing Equations for Particle-laden Homogeneous Shear Flow 

The simplified governing equations for TKE evolution in each phase for particle-laden 

homogeneous shear flows are, 

pfafd~tf = µf a x 3°l aa  31 +2Do(kp -ckf )-p f afsf

a dkP t 8Up,1 8Up,1 + 2Do /ck k 
Pp p [fit ~ p C7x3 (~x3 l .f P~ 

(4.31) 

(4.32) 

The dissipation term and the interphase TKE transfer term in Ahmadi's model are discussed 

in the previous section. The fluid phase Reynolds stress tensor is modeled using the turbulent 

eddy-viscosity concept, 

C.f) _ ~~ ~~ _ 2 t o~U f,,,.t t o~U f,2 aU.f,~ 
T2~ - -(Pf u.f,zu.f~~~ _ -- ~f pf~f -}- µf b2~ + ~~ ~-   (4.33) 

3 ax,n axe axi 
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where the turbulent eddy-viscosity in the fluid phase is modeled identically to that in the 

single-phase turbulence, 

t Cµcx f p f l~ f
µf =  ~ 

f 

The velocity correlation in the particle phase is similarly modeled as, 

(4.34) 

Tij —\A~u~~Zu p~j~ 
,Ya~Pp~~ 

+ ~p  Szj + ~~  + (4.35) 
3 O~x,n 01  x j O`l ~i

where y is a function of the particle volume fraction cx~. The turbulent eddy viscosity ~p is 

modeled as 

where Cµ is 

µP = CµpPa~d~ (4.36) 

Cµ = 0.0853[(Xa~)-1 + 3.2 + 12.1824apX) (4.37) 

and x is the particle radial distribution function, which describes the crowding effect of the 

particles, 
1 + 2.5aP + 4.5904ap + 4.515439aP 

X — 3 0.678021 [1-~~~ J 
(4.38) 

with v,,.L = 0.64356. The increase in the particulate pressure is accounted for through the 

coefficient -y which is given as 

-y = 3 (1 + 4apX) -~ 3 (1 - r 2) (4.39) 

with the restitution coefficient r = 1 in the DNS case. 

The viscosity in particle phase is a function of the solid volume fraction a~, TKE in particle 

phase ~~ and some length scale. This length scale is chosen as the mean particle diameter d 

in Ahmadi's model, which is especially designed for the relative dense collision-dominated 

mixture flows [7] . For dilute mixtures, the fluid turbulence dominates and the particles are 

essentially transported by the fluid phase. Thus it is suggested by Besnard and Harlow in [27] 

that the length scale in the fluid phase is the appropriate length scale in this situation. 
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4.2.3 Initialization of Certain Model Parameters 

The model constants used in Ahmadi's model are listed in Table 4.2. In Ahmadi's model, 

Af is a length of fluid turbulence, which is required to match the initial fluid dissipation rate 

in DNS test case and a relation is required to connect 11f with ~f as time evolves. For the 

isotropic homogeneous turbulent flow, the fluid phase turbulent motion can be approximated 

by the grid turbulence. 

Table 4.2 List of coefficients for Ahmadi's model 

cfD vm  C~ 

0.65 0.64356 0.09 

From grid turbulence experiments, the power law decay of TKE is given as, 

and 

~C~t~ _ ~Cp ~ t ~ -n
tp 

(~+1) 
~'~t~ _ ~0 

~t0/ 

where to is the arbitrary reference time, ko is the value of k at that time. The value of decay 

exponent n can be chosen between 1.15 and 1.45; Mohamed and LaRue [28] suggest that 

nearly all of the data are consistent with n = 1.3 [25]. 

In Ahmadi's model, a f can be approximated as

~3~2 t  (1-n/2) t  0.35 

of ~ ~ (to/ — \to/ 
(4.40) 

and 11 f can be determined from the above relations as time evolves. The arbitrary reference 

time scale is determined by the initial 1~f and ~f in DNS test case. 

For the particle-laden homogeneous shear flows, the fluid phase turbulent motion cannot 

be approximated by such physical model. Since the length scale used in ~f  is not a closed term 

in this model, Ahmadi's model is not tested in the homogeneous shear flows in the thesis. 
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4.3 Numerical Stiffness Problem in Solving the Model Equations 

The multiphase turbulence models discussed in this chapter, are all simplified to a set of 

ordinary differential equations for the test cases, since the test cases are homogeneous in space 

and all the spatial derivatives can be neglected. It is found that for particle-laden isotropic 

turbulent flows, if increasing the particle volume fraction to 10-3 and keeping the density ratio 

fixed, the equation system from both models cannot be solved using the simple Euler scheme if 

the step length is scaled as a fraction of particle response time T12, which is a constant in both 

test cases. With more accurate numerical methods, such as Runge-Kutta 4th order method, 

the solutions axe not stable if the step length is scaled in the same way as it is mentioned 

before. In general, if the equation systems from both models are solved with paxticle volume 

fraction increased and density ratio kept the same, the results are not stable for simple Euler 

scheme and Runge-Kutta 4th order method if the step length is a fraction of a constant, the 

particle response time in the models. The phenomenon exhibited here is known as stiffness. 

Both equation systems from the simplified multiphase turbulence models are stiff systems. 

To understand the concept of stiffness better, the mathematical statement used to describe 

the notion of stiffness is introduced in this section and equation system from Ahmadi's model 

is studied in detail[29]. 

Some mathematical definitions are introduced first. The first-order system y = f (t, y) 

is said to be linear if f (t, y) takes the form f (t, y) = A(t)y + ~(t). Furthermore, if A is 

independent of t, the system is said to be linear with constant coe,~cients. Associated with 

such a system 

y = Ay + ~(t) (4.41) 

is the homogeneous form 

y = Ay (4.42) 

where y and ~/i are vectors in real space Il8"`~ and A is a m x m real matrix with eigenvalues 

~i E (C, i = 1, 2, . . . , m and the corresponding eigenvector c2 E CC'n, i = 1, 2, . . . , m. The 
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general solution of Eq. 4.42 is 
m 

yet) _ ~ ~ieXP~~it)~ , (4.43) 
i=1 

The general solution of Eq. 4.41 can be written as

m 

y~t) _ ~ ~tieXP~~zt~~ -t- ~Y(t), (4.44) 
2=1 

where r~i axe arbitrary constants and ~ (t) is a particular integral. 

Suppose the real parts of all the eigenvalues are less than zero; this implies that each of 

the terms exp(.~it)c; --> 0 as t —> oo, so that the solution y(t) approaches ~(t) asymptotically 

as t -~ oo. The term exp(~it)c.~ will decay monotonically if ~2 is real and sinusoidally if .~;, is 

complex. Usually t can be interpreted as time, and it is appropriate to call ~Z'_' 1 ~iexp(~it)ci 

the transient solution and ~(t) the steady-state solution. The real part of eigenvalue is denoted 

as Re(~~). If ~Re(.~2) ( is large then the corresponding term r~2exp(atit)c, decays quickly as t 

increases and is the fast transient; if ~Re(~2 )~ is small, the corresponding term ~iexp(~,t)c;, 

decays slowly and is a slow transient. If 

~Re~~-..~,~~,)I ~ IRe~~Z)I ~ IRe~~~,a~)~, z = 1,2,... ,m. 

then ~i exp(amaxt)ci is the fastest transient and ~Z exp(~mint)cz is the slowest. If the numerical 

method has a finite region of absolute stability, the step length h must be sufficiently small for 

~ h~i ~ in the absolute stability region. Then it is clear that a large value of ~ Re (~,na~) ~ implies 

a small step length. One might step into a difficult situation if the ratio between (Re(~1max) ~ 

and (Re(amin) ~ is very large; it is required to integrate for a very long time with an excessively 

small step length. This ratio is usually called the stifrness ratio and can be used to measure 

the stiffness of a system. 

Based on the analysis from a mathematical point of view, one can start with the simpli-

fied equation system for particle-laden isotropic turbulent flows from Ahmadi's model, since 

Ahmadi's model just has two governing equations in the system and is easier to analyze. The 

equation system is rewritten as 
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d 
dt 

1~f 2 -gym m 
T 

l~p 
p 

C -1 
_ ~ ~ _ 

l~f

~p 0 
.. _ 

(4.45) 

where TP is the particle response time and ~ is the mass loading. It is clear that in this 

inhomogeneous system, the 2 x 2 matrix A is of rank 1 and it has the eigenvalues ~1 = 0 and 

~2 = —(~~+ 1). Thus the stiffness ratio is oo in this situation, which means that this system is 

a singular system. ~rthermore as mass loading increases, (a2 ~ increases linearly. The model 

coefficient c is actually a function of particle response time TP and eddy turnover time T, and 

c will change with time. 

To solve the homogeneous system first, 

d 
dt 

I~f 

~p 

2 
Tp 

the analytical solution of this ODE system is 

-C~ 

c -1 

f 

~p 

~f (t> - \ of Pf / 1 + c,6 + (~f ~~~ - (~f pf / 1 + c~ / 
. e TP 

(4.46) 

(4.47) 

where pm l~~,-L = p f ly f  -I- p~,1~p is the total TKE per unit volume. In the analytical solution, as 

mass loading ~ increases, the required step length should decrease and should be scaled as a 

fraction of 1+~~ . To solve this equation system, the simplest way is to scale the step length as 

a fraction of 1+~~ instead of Tp with simple Euler time stepping. The temporal convergence for 

the equation system from Ahmadi's model for the particle-laden isotropic turbulence shows in 

Fig. 4.1. The equation system is solved by some very fine time step Otf . Using the solution 

at this time step as reference, the solution solved at the coarse time step Ot~ is compared with 

the reference and RMS error is computed. The x axis represents the ratio Ot~/Otf and y axis 

represents the RMS error. Both axes are of log scale, and the slope of the error growing is 1.0. 

For Simonin's model, the simplified equation system for particle-laden isotropic turbulent 

flows is a more complicate ODE system with four equations. Therefore it is quite difficult to 

get the eigenvalues in a symbolic form and understand the relation between (Re(a„2a~) ( and 

mass loading ~. If the equation system in Simonin's model is rewritten in the homogeneous 
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form, 

J=A~~ 

where A is a 4 x 4 matrix and is a function of t. By fixing all the other variables in the model 

and increasing the particle volume fraction ap, the relation between the largest eigenvalues 

and the mass loading can be obtained numerically. It is found that the largest eigenvalue of 

the system at t = 0 grows linearly with the mass loading ~. However the matrix A is also a 

function of time t, thus the eigenvalues of this system change with time. It is found out that 

the growth of eigenvalues with time is small if compared with the growth of eigenvalues with 

increasing mass loading. The model equation can be solved stably and with a certain order of 

accuracy. This will be helpful when comparing numerical results from turbulence models with 

the DNS data. 

Temporal convergence of Ahmadi's model with Euler time stepping 

2.4E-09 

2.2E-09 

2E-09 

1.8E-09 
L 

L 

~ 1.6E-09 
V~ 

1.4E-09 

1.2E-09 

1 E-09 2 
2.5 3 3.5 

eta/ ~ tf
4 4.5 5 

Figure 4.1 The temporal convergence of equation system from Ahmadi's 
model solved with Euler time stepping. 

The numerical results from the model equations will be compared with DNS results for the 

two canonical test cases for dilute particle—laden turbulent flows in Chapter 5. 
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CHAPTER 5. COMPARATIVE ASSESSMENT OF MULTIPHASE 

TURBULENCE MODELS 

In this Chapter, the predictions from Simonin and Ahmadi's models are described. The 

model results are compared with DNS data for the two canonical test problems. The perfor-

mance of the turbulence models from Simonin and Ahmadi is verified, and some discrepancies 

are found. The reasons behind these anomalous model behaviors are discussed. As discussed 

in Chapter 4, both models need specification of some initial conditions. For Ahmadi's model, 

the length scale of fluid phase turbulence ~f is not defined in the model. For simple flow field 

like isotropic homogeneous turbulence, this length scale can be approximated by experiments 

results. For more complicated flow field, such as homogeneous shear flows, there is no such sim-

ple approximation. The following table 5.1 summarizes the cases in comparative assessment. 

Table 5.1 Cases tested in the comparative assessment 

decaying homogeneous turbulence homogeneous shear flows 
Simonin's model YES YES 
Ahmadi's model YES NO 

From this table, it is clear that Simonin's model will be tested for both test cases, while 

Ahmadi's model is tested only for the decaying homogeneous particle—laden flow. 

5.1 Predictions of Simonin's Model 

In this section, model predictions from Simonin's model are discussed for both the decaying 

homogeneous turbulent flows and the homogeneous shear flows. 
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Decaying Homogeneous Turbulent Flow 

A noteworthy point when comparing model results to DNS results for particle—laden isotropic 

turbulence, is the specification of appropriate initial conditions. In the DNS study, the particle 

velocity is initially set equal to the surrounding fluid velocity. This initial condition has a first 

order effect on the evolution of the dissipation rate at the early time, where the dissipation 

rate in fluid energy increases first then. decrease (see Figure 4. (a) and (b)) in [1] for details) . 

At longer time t/Te > 0.8, one can expect that the DNS has lost the memory of the initial 

conditions and the results correspond to freely decaying particle-laden turbulent flows. The 

initial conditions used comparative assessment are listed in Appendix A. 

The prediction from Simonin's model is compared with DNS for this simple test case. The 

principal result from DNS experiments is that the energy in both phases decreases monoton-

ically. The net effect of the particles is to reduce fluid energy, and this effect grows with 

increasing Stokes numbers. The prediction from Simonin's model is that the TKE in the fluid 

phase decreases monotonically, but the net effect of particle to reduce fluid energy decreases 

with increasing Stokes numbers, which is opposite to DNS results. See Fig. 5.1. 

The model results for particle energy evolutions show steep decay at the beginning, which 

could also be found in the fluid energy decay. The particle energy decays monotonically and 

the decay of particle energy is observed to increase with the growth of Stokes numbers, which 

is consistent with the DNS data. See Fig. 5.2. 

From the governing equation 3.1 in Chapter 3, the decay time scale of l~f  and ~~ could 

be defined as J~f / 
d~ f  and ~p / dk~ , and the governing equations for the reciprocals of these two dt dt 

time scales are 

1 dl~f  _ 
1~f dt 
1 d1~~ 
~~ dt 

1  ~~(.f) °~ (~fTkz) 
cx p 1~ 

u2 
ax ~ fff 

a pP~~p 2 Mi 

+ i 's Mi afpfl~f 

The 1~f equation in Simonin's model can be revised in terms of the reciprocal of the decay time 

scale for I~ f , which is 

1 dk f  _  nk f ES = ~ ~P — 2 — 1
kf  dt af pf kf  kf  T12 pfP kf T 

(5.2) 
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where ~ is the mass loading and T12 is the particle response time. In the budget plot of 

this equation, see Fig. 5.3, the decay of interphase TKE transfer contributes around 50% to 

the right hand side of Eq. 5.2. The particle response time T12 is actually the time scale for 

interphase TKE transfer. As the particle Reynolds number ReP based on (~ yr ~ J 2 is around 

unity, the expression for T12 is simplified to, 

F 4  d  p~ _ 4  a fd~ P~ ~, afd~ Pp 5.3 
T12 3 CD(~vT~~ Pf 3CDRePvf pf  ~ 18vf pf  ) 

as Rep .:~ 1, the product of CD and Rep can be approximated by 24. Hence, in this homogeneous 

turbulent flow, under the conditions of all the Rep approximating to 1, the particle response 
2 

time is approximately constant during the evolution, and can be simplified to ofd Pf in Eq. 18vf p~, 

5.3. 

The governing equation for ~p is also revised here as 

1 dkp _ 1 kf
kP dt - T 2 2 - Pf~ ~p (5.4) 

The decay of ~p totally depends on the particle response time T12 in Eq. 5.4. The sharp decay 

of ~p at the beginning time is mostly caused by this time scale. Hence it is clear that the 

particle response time cannot be used as the time scale for the TKE decay in fluid and particle 

phase. 

The physical reason behind these anomalous behavior of ~f  evolution with different par-

ticle Stokes number and also the steep decay of lip at the beginning is because the particle 

response time, which is taken to be the interphase TKE transfer time scale, could be an appro-

priate time scale only for some specific range of particle-eddy interactions. In reality, particle 

turbulence interaction is a complex multiscale process. Even for the monodispersed gas-solid 

two phase flow, particles interact with a range of eddies with different length and time scales. 

Furthermore, the particle response time and the Stokes number for each particle is different, 

since each particle has a different instantaneous velocity. The particle response time defined 

here can only represent the characteristic time scale of particles interacting with the eddies in 

the dissipation range. 
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The reason for this discrepancy also lies in the fundamental inability of the Eulerian-

Eulerian approach to describe the multiple time and length scales encountered in two-phase 

turbulent flows. In Eulerian-Eulerian models, all the quantities in the governing equations are 

averaged. These averaged time and length scales can only be valid for a range of time and 

length scales, if not properly modeled. 

It is discussed in Chapter 4 that ~fp or pf p is a pseudo-flow quantity. In Fig. 5.4, the 

particle energy decays even faster at the beginning, as pf~ (0} decreases from 2.0 to 0.0. The 

model results show strong dependence on the pseudo-flow quantities like 1~f~ or p f~, which 

reduces applicability of this model. 

Particle-laden Homogeneous Shear Flow 

In the DNS data for homogeneous shear flows by Elghobashi [20], for mass loading ~ = 1.0 

and particle response time Tp = 1.0, the velocity covariance in fluid phase ~u'f,lu'f ,3~ is reported. 

Since this term determined the production in the second moment equations Eq. 3.7, the 

detailed comparison is done for this case.l The results from Simonin's model are compared in 

Fig. 5.5. The reduction rate of 1~f is much faster than DNS results, which is up to 70°0 off at 

T = 3. 

The budget for this case in Fig. 5.6 shows that the interphase TKE transfer term is 

dominant and contributes most to the fast decay at the beginning. In Fig. 5.6, the comparison 

of the shear production shows a large difference between the DNS and model results. However, 

more appropriate comparison should be p f 13 

\ ~~ 1 ~~ 3 / =  uf, uf~ 5.5 1~f 13 ~ ~ } 
\u flu fl~ \u f3u f3~ 

and this is shown in Fig. 5.7. There is large difference at the beginning of evolution and 

after T = 4, the difference is small. This could be due to the initial conditions and also the 

interphase TKE transfer term. 

The particle inertia study is done in the DNS study. Four different cases with the same 

mass loading ~ = 0.1 and T~ = 0.1, 0.25, 0.5, 1.0 shows increasing decaying rate with growth of 

1The initial conditions is described in Appendix B. 
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particle response time. The comparison between DNS and model results is shown in Fig. 5.8. 

DNS data show that with increasing particle response time, the reduction rate of 1~f increases. 

However, the results from Simonin's model give opposite trend with increasing particle response 

time. 

Compared with DNS data for homogeneous shear flows, Simonin's model predicts the steep 

decay of fluid energy at the beginning of evolution. With increasing particle response time but 

fixed mass loading ~, Simonin's mode predicts the opposite trend for fluid energy decay as 

compared to DNS results. 

5.2 Predictions of Ahmadi's Model 

In this section, the model predictions from Ahmadi's model for particle—laden isotropic 

flows are compared with DNS data. 

Decaying Homogeneous Turbulent Flows 

Ahmadi's model shows good agreement of DNS results for evolution of fluid energy, except 

for some quantitative difference after t/Te = 1.5. The decay of ~f is not enough after t/Te = 

1.5. This is because of the simple algebraic closure that is used for the dissipation rate in the 

fluid energy. The anomalous variation of fluid energy evolution with different particle Stokes 

number has not been found in Ahmadi's model. See Fig. 5.9. 

To analyze the governing equation in Ahmadi's model, 1~f equation is rewritten in term of 

reciprocal of decay time scale. 

1 dkf  _ 2Do kp
c 

kf dt a~pP kf
_ ~f 

1~f 

where ~ is the mass loading and a  is the particle response frequency in this model, which 
~P~ 

can be further simplified as 

Do  _18vf pf 1  18vf pf
cx~, p~, — d2 P~ —  ~, 0.25vm. ~  

d2 Pp 1 a 
U~, 

where a p <C 1 (5.7) 

In the definition of c, since D  is the particle response time in this model, c can be viewed 

as a function of the Stokes number, whose definition is based on Lagrangian time macroscale 
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of turbulence T~ . The particle response time does not change during the evolution, since the 

particle Reynolds number is based on mean slip velocity, which is always zero in this case. 

In the model prediction of Ahmadi's model, very fast decay of ~p is observed in the evolution 

of the particle energy, and the quantitative discrepancy between model predictions and DNS 

data is quite large. See Fig. 5.10. The anomalous variation of ~~ evolution with difFerent 

particle Stokes numbers is not found in the model results. 

If the governing equation of ~p is rewritten in terms of the reciprocal of the TKE decay 

time scale, it is obvious that the decay time scale of ~p is determined by the particle response 

time. The model equation for decay frequency of ~p is 

l dip — 2Do ~f  Do ~f— — c~ —1 =2  c —
l~ dt a p cx p 1~ p p p p p P p 

11 ~5.s~ 

The principal time scale used to model the interphase transfer of TKE between 1~f  and ~p

is the particle response time T12. For the reason noted in the previous section, this time scale 

is not an appropriate time scale for interphase TKE transfer. 
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Evolution of TKE in fluid phase for Simonin's model 
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Evolution of normalized TKE in fluid phase for Simonin's model 
and compared with DNS data for particle-laden decaying homo- 
geneous turbulence. The simulation time is scaled by the initial 
large eddy turnover time Te(0) from DNS. (Hereafter the simu-
lation time in the model predictions for particle-laden isotropic 
turbulence is scaled by Te(0).) 
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Figure 5.2 Evolution of normalized TKE in particle phase for Simonin's 
model and comparison of model results with DNS data for par-
ticle-laden decaying homogeneous turbulence. 
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Evolution of the reversed decay time scale 
for fluid energy ly model equation for Simonin's Model 
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Figure 5.3 Evolution of inverse decay time scale in the modeled equation 
for fluid phase TKE from Simonin's model for particle-laden de-
caying homogeneous turbulence. The quantity e f /k f is actually 
the eddy turnover frequency 1/T in Simonin's Model. Results 
for St = 1.6 and St = 3.2 are listed here for comparison. 
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Figure 5.4 Evolution of TKE in particle phase with difFerent initial pfp 
for Simonin's model for particle -̀laden decaying homogeneous 
turbulence. The case shown here is for St=1.6. 
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Evolution of TKE in fluid phase for mass loading ~ .1.0 and Tp.1.0 
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Figure 5.5 Evolution of fluid energy from predictions of Simonin's model 
for particle-laden homogeneous shear flow. 
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Figure 5.6 Budget plot of fluid energy from Simonin's model equations for 
particle-laden homogeneous shear flow. 
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Evolution of correlation P~ for tiP  1.0 and x.1.0 
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Figure 5.7 Evolution of the velocity correlation p f13 from Simonin's model 
for particle-laden homogeneous shear flows. 

1.2 

0.8 

O 
v 

~ 0.6 

0.4 

0.2 

The evolution of fluid energy with different particle inertia 

TP decreases 
Elghobashi (2000) 

~ Q 
q . ~ '' gyp_ 

°~ ~ 'v ~ - _ 
~0. ~ ~ 

Simonin 
ti d 
P 

_~~ 
_ -o _ -o- -- °- _ ~ - 

_~,_~_- o----P- ~
a_- ~ 

_ a' _ ~ - ~ - -~ - -a- - a- - ~ 
~—creases 

00 1 2 

- o-

T 

a- -~—~--a--o- 
TP = 0.1 Simonin 
TP = 0.25 Simonin 
TP - 0.5 Simonin 
TP .1.0 Simonin 
tiP 0.1 Elghobashi (2000) 
TP 0.25 Elghobashi (2000) 
TP 0.5 Elghobashi (2000) 
Tp 1.0 Elghobashi (2000) 

t
3 

t , 
4 

—~ 

5 

Figure 5.8 Evolution of fluid energy for different particle response time T~ 
and the same mass loading ~ for particle-laden homogeneous 
shear flows. 
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Evolution of TKE in fluid phase for Ahmadi's model 
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Figure 5.9 Evolution of normalized TKE in fluid phase for Ahmadi's model 
and comparison of model results with DNS data for parti-
cle-laden decaying homogeneous turbulence. 
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Figure 5.10 Evolution of normalized TKE in particle phase for Ahmadi's 
model and comparison of model results with DNS data for 
particle-laden decaying homogeneous turbulence. 
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CHAPTER 6. THE EQUILIBRATION OF ENERGY MODEL 

As it is discussed in Chapter 5, the model predictions from Simonin and Ahmadi's model 

show fast decay at the beginning of the particle energy evolution. For Simonin's model, the 

decay rate of TKE in fluid phase shows opposite trends with the growth of particle response 

time when compared with DNS results for particle-laden decaying homogeneous turbulence 

and homogeneous shear flows . 

A new multiphase model, Equilibration of Energy Model (EEM), is proposed in this chapter, 

which has a new time scale for interphase TKE transfer for dilute particle-laden turbulent flows. 

Model predictions from EEM and are carefully evaluated and compared with DNS results for 

particle-laden isotropic turbulence [1] and particle-laden homogeneous shear flows [20J. The 

multiscale interaction time scale is also incorporated in Simonin and Ahmadi's models, and 

this improves the performance of these two models. 

6.1 Multiscale Interaction Model 

In this section, a new time scale is proposed t0 model the interphase TKE transfer. This 

new time scale is implemented in both Simonin and Ahmadi's models, which improves the 

model performance for the particle-laden isotropic turbulence. 

The anomalous model behavior of ~f  with dif.£erent Stokes number in Simonin's model 

predictions and the sharp decay of ~p in predictions from both models need to be improved. 

In the two models tested, the complex particle-fluid interaction is characterized by a single 

time scale, the particle response time Tp. However, in the governing equation of both DNS 

studies [1, 20J, the particle response time is used as the principal time scale in the interphase 

momentum and energy transfer. In the DNS study, the particles interact with a range of 
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time and length scales in the flow, the energy containing range, the inertial range and the 

dissipation range, which is a more realistic implementation of fluid-particle interactions. Based 

on this understanding, a multiscale interaction. model was first proposed by Pai et. al. [30], to 

improve the multiphase turbulence model in KIVA, which is based on the Lagrangian-Eulerian 

approach. This multiscale interaction model is implemented in the Eulerian-Eulerian models 

tested in this work. 

One can define a particle Stokes number based on Tl , a characteristic eddy time scale, rather 

than the Kolmogorov time scale. Tl is defined as follows, 

l (u' (29 Tj = lu~ l = ~f
9 

where l is the size of some eddy, and ~u'y ~ is assumed to be joint-normal for the isotropic 

turbulence. F1~rthermore Stl can be scaled as 

Stl = T~ 
Tl 

1 
lu, Iz 

9 

This means that more energetic eddies can be associated with a small Stokes number and small 

fluctuations can be associated with a large Stokes number. So corresponding to different size 

of eddies, there are different particle Stokes numbers. 

The hypothesis is that for Stl < 1, the particle responds immediately to the flow. When 

particles are entrained in the eddies with Stl < 1, the particles will basically follow the char-

acteristic time scale of the eddies. As Stl approaches 0, the particles follow the eddy turnover 

time. 

For Stl > 1, the particle responds slowly to the flow. In this case, the characteristic size 

of the eddies is small and also ' u'y (2 is very small. Particles will not be entrained and will not 

move along with these small eddies. The inertia of the particle plays the important role when 

the particle interacts with small size eddies. Since the particle response time is a measure of 

the particle inertia, which depends on the density and the size of the particles, the particle 

follows its response time when Stl > 1. 

For the two test cases, isotropic turbulence and homogeneous shear turbulence, the fluctuating 

velocity in the fluid phase is assumed to be joint normal, and the distribution of ~u9 ~ follows 
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the distribution like 
1 z2e—z2/2Qf 
3 of

where Z = ~u9~ and Q f is the standard deviation of ~ug~, which is ~3k f . Figure 6.1 is the 

sketch of the distribution function of ~uy~. Following this hypothesis, the axis of ~u'y ~ will be 

split into two parts, and the transition fluctuating fluid velocity is called ~u'y ~* in this work. At 

~u'y ~*, Std = TP~T~ is equal to 1. 

~N 

fz(Z) _ 

The distribution function (PDF) of ~u'9~ 
I I l t , I I 1 1 ' I 1 1 1 1 1 1 1 1 ' I I I I ' 1 1 1 { 

St, < 1 

' 1 I 

Z 

Figure 6.1 Sketch of the distribution function of ~u9~, where Z = ~u'y ~. 

To construct a multiscale interaction time scale T2 , the concept of the expected value or 

mean of a function is used here. The interaction time Tti is a function of ~u9~, which is a random 

variable following the distribution function f Z(Z) in the test cases. It is hypothesized in this 

study that the interaction time is the unconditional mean of the interaction time TZ weighted 

according to the probability function of ~u9~. 

~Ti~ — ~ TiI Z=zfZ~Z~~ 
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The function of Ti is assumed to be 

Tti = TP Q G lugl < IUgI* ~6.1~ 

Tti = Stl ~?P - T~ -}-T IUgI* G IUgI < 00 (62) 

The interaction time in the range ~ u'y ~ * < ~ u9 ~ < oo is simply modeled as a linear function 

of Stl. As Stl --~ 0, T2 is equal to eddy turnover time T and the particle just moves with the 

eddies. When Stl > 1, the particle responds slowly to the flow, and the particle response time 

Tp is dominant here. 

One can retrieve Simonin and Ahmadi's model from the expression of (Ti } by moving ~ u9 ~ 

to infinity and (Ti } ~ u• ~ * ~~ = T~, where Tp is the particle response time. This means that the 
9 

particle responds to the flow at the particle response time scale for the entire range of u9. If 

~ u9 (* is moved to 0, all the particles respond to the surrounding fluid at the characteristic time 

scale of eddies. 

The unconditional mean of TZ is defined as 

~ug~ * 00 

(TZ} = Tp fz(Z)dZ + [Stl • (Tp - T) + T] • f Z(Z)dZ (6.3) 
0 ~uy~* 

where f Z (Z) is the distribution function of (u9 ~ . 

After implementing the new multiscale interaction model in Simonin's model, the steep 

decay at the beginning of 1~f  and ~p evolution is removed for particle-laden decaying homo-

geneous turbulence. The incorrect trend of 1~f decaying rate with increasing particle Stokes 

number is corrected with implementation of (Ti} in Simonin's model as interphase TKE transfer 

time scale (See Fig. 6.2, Fig. 6.3 } . 

For particle-laden homogeneous shear flows, results from Simonin's model with (Ti} become 

closer to DNS data from Elghobashi for special case mass loading ~ = 1.0 and particle response 

time Tp = 1.0, see Fig. 6.8. For the fluid energy evolution with increasing particle response 

time Tp = 0.1, 0.25, 0.5, 1.0, incorrect trend with increasing Stokes number in Simonin's model 

results is corrected after implementing (Ti } as the interphase TKE transfer time scale, see 

Fig. 6.4. 
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For Ahmadi's model, the fast decay of particle energy at the beginning is eliminated after 

the implementation of ~TZ) in Ahmadi's model. See Fig. 6.5. The idea of multiscale interaction 

time scale improves the performance of both Simonin and Ahmadi's models for particle-laden 

isotropic turbulence in this study. 

6.2 Equilibration of Energy Model 

In this section, a new multiphase model based on the multiscale interaction model is pro- 

posed and tested in the isotropic particle-laden turbulent flow and the particle-laden homo- 

geneous turbulent shear flow. 

6.2.1 Description of EEM 

The two turbulence models tested for particle-laden flow use the particle response time T~ 

as the time scale for interphase turbulence kinetic energy transfer. In Simonin's model, the 

pseudo-flow quantity ~fp is used to account for the fluid-particle velocity covariance. Ahmadi's 

model uses the single phase dissipation model for gas-solid two-phase flows. The predictions 

from both models show the considerable quantitative and qualitative difference when compared 

with DNS results for particle-laden isotropic turbulence. 

A new model is proposed to use the interphase TKE transfer time scale T,~, and is designed 

to be simple enough so as to be amenable to some analysis in the homogeneous case. This 

model is designed by considering the behavior of a two-phase flow system in the limit of 

stationary turbulence. It is proposed that if the fluid turbulence in a homogeneous particle-

laden turbulent flow is forced to balance the dissipation, the particle phase TKE ~p and fluid 

energy ~f  will evolve to their respective equilibrium values ~f and ~p over the interphase TKE 

transfer time scale T,~. 

The equilibration of energy concept can be extended to a corresponding multiphase turbu-

lence model in the Lagrangian-Eulerian approach, as described in Pai & Subramaniam [30] . 

In that work, a system of coupled Langevin equations for the fluctuating velocity in each phase 

is proposed with drift and diffusion terms coupled through the interphase TKE transfer time 
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scale ;~. 

The model equations are written in terms of of = p faf ~f and e~ = p~,a~l~p, which are the 

contributions to the total mixture energy em = p,~,ti l~m from each phase, where the mixture 

density p~-,-L = p f a f -}-~ p~cxp. The model equations for e f and ep are 

def _ 

dt 
dep
dt 

of-ef 
T~ 

e e~ — ep

T~ 

pfafef 

where the superscript e means the equilibrium state. Here the collisions are assumed to be 

elastic in the particle phase, thus the dissipation rate in the particle phase is zero. 

The equilibrium values of fluid and particle phase energy (ef = p f~xf ~f and ep = ppcxpl~p ), 

are determined by a model constant C2 which is defined as 

e e e~ of
C2 = 1 — C2 = 

errs em 

where C2 lies between 0 and 1. The model parameter C2 is the fraction of the specific mixture 

energy presented in the particle phase at equilibrium, and it is assumed to be independent of 

time, since it is defined at a stationary state. C2 still can be a function of the parameters like 

mass loading ratio ~. In the decaying case, the equilibrium values of and ep can change with 

time, because the total fluctuating velocity energy changes, but C2 is a model constant and 

that does not change with time. 

The dissipation rate of fluid energy is modeled as 

de of e f - of ~ f
~ fp.f f 

- - CE,3 - C~,Za fpf dt 1~f (T2 } l~f 
(6.4) 

The dissipation rate model in EEM is formulated after the dissipation rate mode equation in 

Simonin's model. In particle-laden turbulent flows, the particle wake and boundary layer can 

enhance the decay of TKE in the whole system, which is described by the first term on right 

hand side of Eq. 6.4. The dissipation caused by the viscous effects is described in the second 

term. 
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The interphase TKE transfer time scale T,~ is assumed to be a function of (TZ) discussed in 

Section 6.1 
{T2 > 

T~- = 
C 

or 

where (Ti) is the multiscale interaction time scale. 

C,~ _ ~Ti 

T.~ 

Then for particle-laden isotropic turbulence, the equation system for EEM is 

dkf _ 1 
dt 

- T~ [C2k f  - (1 - C2)~~~~ - Ef 

def _ ~f 1 
dt - -CE,3 ~ f T~ [C2k f - (1 - C2)~k~, 

dkp _ 1 ~(1 - C2)kp - ~ k 
fJdt T,~ 

~2 

C~,2 f 
~f

(6.5) 

(6.6) 

(6.7) 

(s.8) 

where ~ = a~ p~,~ (txf p f) is the mass loading ratio. 

The proposed model requires specification of the two model constants C2 and C,~ . In the 

absence of the relevant results from DNS of stationary turbulence, it is hypothesized that C2

likely has a strong dependence on the mass loading ~ of the system, and it is also hypothesized 

that C2 is likely to not likely depend strongly on the volume fraction ap for dilute flows, or 

particle Reynolds number in the Stokes regime, or particle Stokes number St. In this study, 

C2 is chosen to be a linear function of mass loading ~, and C2 can be chosen around 0.6~. The 

interphase TKE transfer time scale has been discussed and verified in the previous section. C~ 

is chosen tobe2~3. 

EEM is similar to Ahmadi's model, however, to compared with Ahmadi's model, EEM has 

clear physical meaning and the model coefficients can be extracted from detailed DNS studies 

of the particle-laden stationary turbulent flows. Furthermore, EEM has no unclosed model 

parameters. 

For particle-laden homogeneous shear turbulence, the production due to the homogeneous 

shear will take effect. In EEM, the concept of turbulent eddy-viscosity is used to model the 

production due to the shear. The simplified governing equations for the homogeneous shear 
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flows are 

dl~ f
dt 
d~f

dt 
dip
dt 

~~ ~~ ~~f,1 = II~f — ~ f — (u f,lu f,3~ 
Òlx3 

_ ~f ~~ ~~ aUf,2 
— II~f — CE,1(u f,iuf,.~} + C~,2~ f~ f ate;
— ii i, O~U~,1 
— II~~ — {up~lu~~3} 

o~x3 

1 
where IIkf  , I1~ f  and II~~ represent the interphase TKE transfer. The velocity correlation in 

the fluid phase ~u f ,lu'f ,3} is modeled through the concept of turbulent eddy viscosity, and is 

the same as that in the single turbulence model 

( ~i ii _ t ~~f ,1 
uf~luf,3} — —vf o~x3

where 
2 

t 
~f

of = Cµ
~f 

where ~'~ = 0.09. The velocity correlation in particle phase ~u'p,1 u`~,3 } is modeled as 

I __ t aU~,l 
\u~~lup,3} —vp 

ax3 
where Vp = C µ2ICp (Tti ) 

(6.12) 

(6.13) 

where Cµ2 is chosen to be 0.001 ~ 0.003 in this case. For relatively dense collision-dominated 

mixtures, the turbulent viscosity in the particle is modeled as vp = C,~2aPd(kP)1~2, where Cµ2

is a function of particle volume fraction and d is the mean diameter of particle phase [7, 8]. 

For dilute mixtures, the fluid turbulence dominates and the particles are transported by the 

fluid motion. It is suggested [7] that the fluid length scale should be the relevant scale in vP. 

In EEM, the multiscale interaction time (TZ) has the fluid phase turbulence information in it 

and this makes it the appropriate scale to model the dilute mixture. The model coefficients in 

EEM are listed in Table 6.1 

Table 6.1 List of coefficients for EEM 

C2 CE,2 Ce,3 C,~ Cµ2 
0.6~ 1.92 1.2 2.0 ~ 3.0 0.001 N 0.003 

6.2.2 Model Predictions of EEM for two canonical test cases 

In this section, the model predictions from EEM for particle-laden decaying homogeneous 

turbulence and particle-laden homogeneous shear flows are described. The predictions from 
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EEM for decaying turbulence are shown in Fig. 6.6 and 6.7. The model results match the 

fluid phase dissipation quite well at the beginning of the evolution, and small quantitative 

discrepancy is observed after t/Te > 1.5. EEM can reproduce the trend of the fluid energy 1~f

decay rate with increasing Stokes numbers correctly. The decay in particle energy is a little 

smaller than the DNS results, but the overall trend is quite goad. 

For particle-laden homogeneous shear flows, predictions from EEM are compared with 

those from Simonin's model and Simonin's model improved with multiscale interaction time 

scale (TZ ~ . For mass loading ~ = 1.0 and particle response time Tp = 1.0, the velocity covari-

ance (u'f,lu f ,3~ is reported. Since this term determines the production in the second moment 

equations, the detailed comparison is done. In Fig. 6.8, the fluid energy evolution from EEM is 

quite close to the DNS results at the beginning (T < 1) . But after T > 1, the fluid energy start 

to increase, which is different from the DNS results. Here the model coefiiicient C2 is chosen 

to be 0.5, since C2 is suggested to be around 0.6~ Compared with model predictions from 

Simonin's model and Simonin's model improved with (TZ } , EEM predicts stranger production 

in fluid phase. 

From the budget plot Fig. 6.10, it is the balance of production and dissipation that de-

termines the evolution of fluid energy. The evolution of dissipation in fluid phase is reported 

in DNS data. If the modeled dissipation is replaced with the dissipation rate in fluid phase 

from DNS study, the increase in fluid energy will be eliminated. Furthermore by increasing 

Cµ2 in particle phase shear production, the fluid energy increases and with Cµ2 = 0.5 ti 0.8, 

the model prediction from EEM is quite close to DNS results, see Fig. 6.11. From these, it 

can conclude that if the fluid dissipation can be modeled more accurately, the predictions from 

EEM can be further improved. 

The correlation p13 of fluctuating velocity u f ,1 and u f ,3 is shown in Fig. 6.9. The results 

from EEM are closer to DNS data at the long time of simulations. The large discrepancy at 

the beginning of evolution observed in Simonin's model results predictions is also in EEM's 

results. This discrenpancy can be caused by the influence of initial conditions from DNS study. 

The model results for particle inertia study from EEM are shown in Fig. 6.12. The results 
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from Simonin's model with multiscale interaction time scale are presented for comparison. The 

model results from EEM is very close to DNS data, and the trend with variation of particle 

inertia is correct. But the difference between different particle inertia is too small. One possible 

reason for this deficiency is that there is no particle inertia information in the fluid production 

term. One way to improve this is to use ~TZ ~ as the time scale in of instead of eddy turnover 

time T. But without detailed DNS data for variation of shear production with different particle 

inertia, the model for fluid and particle shear production terms in EEM can not be specified 

with complete confidence. 

6.2.3 Discussion 

In previous section, a multiphase turbulence model, EEM, is proposed, which uses a new 

time scale ~Ti~ for interphase TKE transfer. This new time scale succeeds in reproducing 

the trend of fluid phase TKE decay rate with variation of particle Stokes numbers in the 

particle-laden isotropic turbulence. From Section 6.2, the EEM's predictions for homogeneous 

shear are not as good as expected. It is suggested that by improving the modeling of fluid 

dissipation, the model results can be further improved. However, the DNS study of Elghobashi 

j20] doesn't provide the detailed TKE budget study for 1~f  and k~ for various mass loading 

~ and particle Stokes numbers St. The production term in particle phase suggested in EEM 

has the appropriate time and length scale in it. Moreover, there is possibility that the model 

coefficients like Cue are functions of particle Stokes number, particle Reynolds number and 

mass loading, but the further specification of model coefficients like Cue needs more detailed 

DNS studies for particle-laden stationary turbulence. 

The case of particle-laden stationary turbulence is important, since the statistically sta-

tionary flows can be evolved to an equilibrium in which particle motion, and the effect of 

particles on the flow, are independent of initial conditions. Furthermore, the time and length 

scale ratio of the turbulence relative to the particles also become stationary. The DNS results 

from statistically stationary flows will reveal useful information for modeling. Two test cases 

chosen in this work are for decaying turbulence, which brings some difficulties when identifying 
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and separating the influence from the initial conditions. 

The dissipation in fluid phase is another important issue in DNS study of particle-laden 

turbulent flows. The DNS results for the two test cases are all based on the point particle 

assumption, which means that all the particles in the flow field are modeled as a point and the 

linear drag law is applied on each particle. The force of particle acting on the flow field is done 

by the "reverse" or "backward" interpolation functions. The flow field around the particle is 

not solved with this kind of method. To calculate the dissipation in fluid phase accurately, 

one needs to solve the flow field around each particle, which means that the computation will 

consume huge amount of computation power, which are becoming commonplace nowadays. 
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Figure 6.2 Evolution of normalized TKE in the fluid phase for Simonin's 
model incorporated with the multiscale interaction time scale 
(Tz) and comparison of model results with DNS data for parti-
cl~laden isotropic turbulence. 
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Evolution of TKE in particle phase for Simonin's model with <ti,> 

Figure 6.3 
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Evolution of particle energy ~ for Ahmadi's model with <ti~> 

Figure 6.5 
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compared with DNS data particle--laden decaying homogeneous 
turbulence. 
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Evolution of fluid energy with dissipation rate fixed from DNS data 
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Figure 6.11 Evolution of TKE in fluid phase with fluid dissipation rate 
fixed from DNS data for EEM. 
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CHAPTER 7. CONCLUDING REMARKS 

Two multiphase turbulence models from Simonin [10, 11] and Ahmadi [7, 8~) are compared 

with direct numerical simulations (DNS) of two canonical flows: homogeneous, paxticl~laden 

isotropic turbulent flow [1], and paxticle-laden homogeneous sheax flow [20]. The principal 

findings from this performance assessment of the two models are: 

(1) For homogeneous particlesladen turbulent flow, both models predict a faster decay rate of 

fluctuating energy (in both phases) than found in the DNS. The reason for the faster decay 

is that the particle response time (Tp = d2pP/18µf) is used as the time scale for interphase 

TKE transfer in both models. For monodisperse particles there is a single particle response 

time scale. The results indicate that a single particle response time does not adequately 

characterize the interaction between the particles and the range of turbulent eddy sizes, 

which is responsible for interphase TKE transfer. 

(2) Anomalous variation of TKE with difrerent particle Stokes numbers is found in the results. 

The interphase TKE transfer is the dominant term in Simonin's model that causes this 

anomalous model behavior. The interphase TKE transfer model introduces apseudo-flow 

quantity I~ fp, and uses the particle response time as the relevant time scale for interphase 

TKE transfer. 

The following areas for model improvement are identified: (i) model for interphase TKE 

transfer, especially the time scale of interphase TKE transfer, and (ii) correct prediction of 

TKE evolution with variation of particle Stokes number. Furthermore, Ahmadi's model has an 

unclosed length scale associated with the model for fluid phase dissipation rate. In Simonin's 

model, apseudo-flow quantity 1~ fp is introduced, and it is unclear how the initial and boundary 

conditions for this term should be specified. These deficiencies in Simonin and Ahmadi's model 
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limit the appliability of these two models. 

A new multiphase turbulence model, Equilibration of Energy Model (EEM), is proposed 

in this paper. A noteworthy point of EEM is that a multiscale interaction time scale ~TZ} is 

proposed to account for the interaction of particle with a range of eddy sizes (from the energy 

containing range to the dissipation range) . As the particle Stokes number approaches zero, 

(TZ } approaches the eddy turnover time; and ~T2) approaches particle response time T~ in the 

limit of St -~ oo . 

This new time scale (TZ} is incorporated in the interphase TKE transfer terms of Simonin 

and Ahmadi's models. It is found that for particle-laden isotropic turbulence, the predicted 

decay of TKE at the beginning of simulation is improved. The anomalous variation of TKE 

with particle Stokes numbers in Simonin's model is also eliminated by using the time scale 

(~-Z) . The predictions from EEM shows good agreement with the DNS results for particle-laden 

isotropic turbulence. 

For more complicated flow cases, like the particle-laden homogeneous shear flows, the 

model predictions can be further improved if the dissipation rate in fluid phase is modeled 

with more accuracy. A difficulty that is encountered in shear flows is that the detailed budget 

of terms in the TKE equation is not available from existing DNS studies. 

Although EEM is a simple model, it has clear a physical interpretation and gives reasonable 

trends with the important nondimensional parameters of particle-laden turbulent flow. It can 

be a useful engineering tool for CFD simulation of particle-laden turbulent flows. 

Future work is suggested as follows: 

1) To model more complicated case, like inhomogeneous turbulent flow, the model for 

Reynolds stress in both phase is required. 

2) For more realistic cases, such as turbulent pipe flows, the boundary conditions for both 

phases will be necessary. 

3) The model coefficients in EEM need further specification. Then the detailed DNS study 

of particle-laden stationary turbulence is required. 
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APPENDIX A. INITIAL ZTALUES FOR PARTICLE—LADEN 

ISOTROPIC TURBULENCE 

Since the data at the beginning of evolution is contaminated by the setup of the initial 

conditions in the DNS study for particle—laden isotropic turbulence. The initial conditions all 

start from t/Te = 0.8 in the thesis. For the different Stokes number, the TKE and dissipation 

rate in the fluid energy are different. From the DNS study, the total energy of the system is 

dissipated by two mechanisms: 

(1) the viscous dissipation occuring throughout the continuous fluid phase; 

(2) losses due to drag at the particle interphase. And particles are significantly dissipative 

to the total kinetic energy of the system. 

In this study, since the model simulation starts from t/Te = 0.8, the initial dissipation rate in 

fluid phase is chosen to be the sum from the two mechanisms. The initial conditions used in 

this study are listed in Table. A.l 

Table A.1 Initial values of simulation parameters for 
different particle Stokes numbers 

particle Stokes number (St) k f  (0) kp(0) ~ f (0) 
St=1.6 0.9659 0.8952 0.3627 
St=3.2 0.94498 0.8172 0.3996 
St=6.4 0.9422 0.8294 0.43835 
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APPENDIX B. INITIAL VALUES FOR PARTICLE-LADEN 

HOMOGENEOUS SHEAR FLOWS 

In the DNS study for the homogeneous shear flows, the particles are injected in the flow 

at T = 1. All the initial condition presented here is at T = 1. 

Table B.1 Initial values of parameters common to 
all the cases for particle-laden homoge-
neous shear flow 

Parameters Values 

P.f 
of 

1~f 
~p

1. 
0.0001050 
0.0014953 
0.0014953 

Table B .2 Initial values of parameters for different 
test cases in particle-laden homogeneous 
shear flow 

Case Tp d pP/pf St = Tp/T,~ aP ~~,, 
B 1.0 1.0 x 10-3 1890 2.33 5.0 x 10-4 1.0 
C 0.1 6.0 x 10-4 525 0.233 1.9 x 10-4 0.1 
F 1.0 1.0 x 10-3 1890 2.33 5.0 x 10-5 0.1 
G 1.0 1.0 x 10-3 1890 2.33 2.5 x 10-4 0.5 
H 0.5 1.0 x 10-3 945 1:165 1.0 x 10-4 0.1 
I 0.25 1.0 x 10-3 472.5 0.583 2.1 x 10-4 0.1 
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